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Abstract— Recently, it was observed that spatially-coupled
LDPC code ensembles approach the Shannon capacity for a
class of binary-input memoryless symmetric (BMS) channels.
The fundamental reason for this was attributed to a threshold
saturation phenomena derived in [1]. In particular, it was shown
that the belief propagation (BP) threshold of the spatially
coupled codes is equal to the maximum a posteriori (MAP)
decoding threshold of the underlying constituent codes. In this
sense, the BP threshold is saturated to its maximum value.
Moreover, it has been empirically observed that the same
phenomena also occurs when transmitting over more general
classes of BMS channels.

In this paper, we show that the effect of spatial coupling is not
restricted to the realm of channel coding. The effect of coupling
also manifests itself in compressed sensing. Specifically, we show
that spatially-coupled measurement matrices have an improved
sparsity to sampling threshold for reconstruction algorithms
based on verification decoding. For BP-based reconstruction
algorithms, this phenomenon is also tested empirically via
simulation. At the block lengths accessible via simulation, the
effect is quite small and it seems that spatial coupling is not
providing the gains one might expect. Based on the threshold
analysis, however, we believe this warrants further study.

I. INTRODUCTION

This work investigates the effect of spatial coupling in
compressed sensing. Spatially-coupled codes are a class of
protograph-based low-density parity-check (LDPC) codes
capable of achieving near capacity performance, under low-
complexity belief propagation (BP) decoding, when trans-
mitting over binary-input memoryless symmetric (BMS)
channels. The history of these codes can be traced back
to the work of Felström and Zigangirov [2], where they
were introduced as convolutional LDPC code ensembles.
There is a considerable literature on convolutional-like LDPC
ensembles. Variations in their constructions as well as some
analysis can be found in [3]–[15].

The fundamental reason underlying the remarkable per-
formance was recently discussed in detail in [1] for the
case where the transmission takes place over the binary
erasure channel. Before we go further, we briefly explain
the construction of spatially-coupled codes; for more details,
see [1].

A. Spatially coupled codes – (dl, dr, L) ensemble

Recall that a regular (dl, dr) LDPC code ensemble can
be represented by the protograph (or base graph) as shown
in Fig. 1. Spatially coupled code ensemble, denoted by
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(dl, dr, L), is constructed by considering a protograph cre-
ated by taking multiple copies of the (dl, dr) protograph (see
the figure on the right-hand-side in Fig. 1) and connecting
them as shown in the Fig. 2. We stress here that this is only
the protograph. The code is constructed by taking multiple
copies of this base graph and interconnecting them using a
random permutation.

1 2 L

Fig. 1. On the left is the protograph of a standard (3, 6)-regular ensemble.
The graph on the right illustrates a chain of L protographs of the standard
(3, 6)-regular ensemble for L = 19. These protographs do not interact.

For the sake of exposition we consider (dl, kdl)-regular
LDPC ensemble, with dl odd and d̂l = (dl − 1)/2 ∈ N.
However, coupled codes can also be constructed starting
from any standard (dl, dr)-regular LDPC code ensemble [1].
To achieve the coupling, connect each protograph to d̂l
protographs “to the left” and to d̂l protographs “to the right.”
This is shown in Figure 2 for the case (dl = 3, dr = 6) and
L = 9. An extra d̂l check nodes are added on each side to
connect the “overhanging” edges at the boundary.

There are two main effects resulting from this coupling
(see [1] for details):
(i) Rate Reduction: Recall that the design rate of the under-
lying standard (dl, dr = kdl)-regular ensemble is 1 − dl

dr
=

k−1
k . The design rate of the corresponding (dl, dr = kdl, L)

ensemble, due to boundary effects, is reduced to

R(dl, dr = kdl, L) =
k − 1

k
− dl − 1

kL
. (1)
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Fig. 2. A coupled chain of protographs with L = 19 and (dl = 3, dr = 6).



(ii) Threshold Increase: Let εBP(dl, dr, L), εMAP(dl, dr, L) and
εMAP(dl, dr) denote the threshold1 of the BP decoder for
the (dl, dr, L) ensemble, MAP threshold of the (dl, dr, L)
ensemble and the MAP threshold of the underlying (dl, dr)
ensemble, respectively. Then the main result of [1] is that

εBP(dl, dr, L) ≈ εMAP(dl, dr, L) ≈ εMAP(dl, dr).

See [1] for a precise statement of the main theorem. The
effect of coupling can been nicely seen by plotting the EXIT
curves for the uncoupled and coupled codes. This is shown
in Fig. 3. Similar phenomena also occurs when transmitting
over more general BMS channels [16], [17].

B. Outline

In this work, we study the effect of spatial coupling in
the problem of compressed sensing. We begin with our
compressive sensing setup and explain our decoders in the
next section. In the same section, we introduce spatially-
coupled measurement matrices. We then develop the density
evolution (DE) equations for the class of decoders which we
consider. In Section III we perform experiments depicting
the effect of spatial coupling. We conclude with a short
discussion of interesting open questions.

II. COMPRESSED SENSING

Compressed sensing (CS) is now one of the most exciting
new areas in signal processing. It is based on the idea that
many real-world signals (e.g., those sparse in some transform
domain) can be reconstructed from a small number of linear
measurements. This idea originated in the areas of statistics
and signal processing [18]–[22], but is also quite related to
previous work in computer science [23]–[25] and applied
mathematics [26]–[28]. CS is also very closely related to
error-correcting codes, and can be seen as source coding
using linear codes over real numbers [29]–[36].

The basic problem is to measure and then reconstruct a
signal vector x ∈ RN using the linear observation model y =
Φx + w, where the matrix Φ ∈ RM×N is the measurement
matrix and w is a noise vector. The signal vector is called K-
sparse if it contains at most K non-zero entries. If, instead
of being identically zero, the other N −K entries are much
smaller than the largest K entries, then the vector is called
approximately sparse.

The main goal of this paper is to study the effect of spatial
coupling on the performance of CS systems. Spatial coupling
has been shown to drastically increase the threshold LDPC
codes with an asymptotically negligible decrease in the
code rate. The tight connection between low-density parity-
check (LDPC) codes and CS means that one would expect
spatial coupling to improve message-passing decoders for CS
systems. A more subtle question is whether or not traditional
CS decoders based on convex relaxations (e.g., basis pursuit
and LASSO) will also benefit from spatial coupling. In
this paper, we compare various standard constructions of

1The BP(MAP) threshold, of a fixed ensemble of codes, denotes the
channel parameter value below which the BP(MAP) decoder succeeds and
fails above it.
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Fig. 3. The figure depicts the BP EXIT curves of the ensemble (3, 6, L)
for L = 2, 4, 8, 16, 32, 64, 128, and 256, when transmitting over the binary
erasure channel. The light/dark gray areas mark the interior of the BP/MAP
EXIT function of the underlying (3, 6)-regular ensemble, respectively. For
small values of L, the increase in threshold is because of the rate loss. As
L increases the curves keep moving to the left and get “stuck” at the MAP
threshold of the underlying regular ensemble.

measurement matrices with constructions based on spatial
coupling. These tests are performed using a variety of CS
decoders and a few signal models.

A. System Model

All our CS results rely on sparse measurement matrices. A
variety of such matrices have been considered before in [29]–
[32], [37], [38]. Their main advantage is that they enable
a variety of low-complexity reconstruction techniques. In
general, the entries of the measurement matrix are either
chosen to be plus/minus one with equal probability, or drawn
from a continuous distribution. The latter provides some
benefit when the signal contains only a small set of non-
zero values.

Throughout the paper we will consider two kinds of
measurement matrices. The first type of measurement matrix
is generated from the parity-check matrix sampled uniformly
at random from the ensemble of a regular (dl, dr = kdl)
LDPC codes. The sampling ratio, δ, is given by 1/k. The
second type of measurement matrix, which we call a spatially
coupled measurement matrix, will be generated from the
parity-check matrix sampled from the (dl, dr, L) ensemble.
In this case, the sampling ratio can be obtained from (1) as
δ = 1

k + dl−1
kL . For finite L, the number of measurements

of the spatially coupled measurement matrix is larger than
the corresponding uncoupled matrix. But as L → ∞,
the two measurement matrices have an equal number of
measurements.

The signal x ∈ RN is assumed to be drawn i.i.d. from
some distribution fX(x). The parameter ε determines the
fraction non-zero entries in the signal. To model εN -sparse
vectors, one typically assumes that fX(x) has a delta func-
tion at x = 0 with mass 1 − ε. For approximately sparse



vectors, we use the two-Gaussian mixture model from [32],
[39]. In this model, all entries are independent zero-mean
Gaussians but a fraction εN have variance σ2

1 and a fraction
(1− ε)N have variance σ2

0 (with σ1 > σ0).

B. Message Passing Reconstruction

Message-passing (MP) reconstruction for compressed-
sensing systems based on sparse measurement matrices was
introduced by Sarvotham, Baron, and Baraniuk in [29], [32],
[39]. The tight connection between CS and error-correcting
codes enabled researchers to quickly analyze other MP
reconstruction schemes based on tools from modern coding
theory [30], [31], [33], [37]. Recently, there has also been
some progress in analyzing the performance of these schemes
for approximately sparse signals and noisy observations [35],
[39], [40].

For sparse measurement matrices, the asymptotic per-
formance of MP reconstruction can be analyzed (in the-
ory) using density evolution (DE) [41]. Indeed, this works
well for simplified suboptimal reconstruction algorithms like
the ”sudocodes” reconstruction [29], [42]. For true belief-
propagation (BP) reconstruction, however, numerical eval-
uation of the DE equations is intractable. This means that
it is difficult to determine the asymptotic behavior of a
particular sparse ensemble with BP reconstruction. Recently,
Donoho, Maleki and Montanari [35], [34] proposed an ap-
proximate message passing (AMP) algorithm for compressed
sensing with dense Gaussian measurement matrices. For
this algorithm, they introduced a variant of DE (known as
state evolution) that provides a precise characterization of its
performance.

C. Analytical Setup

Our analytical results rely on the suboptimal reconstruc-
tion technique introduced for ”sudocodes” by Sarvotham,
Baron, and Baraniuk [29]. The ”sudocodes” reconstruction
technique falls into the class of verification decoders that
was introduced and analyzed by Luby and Mitzenmacher
for LDPC codes over large alphabets [43]. In this paper,
we use the message-passing based implementation of the
second (more powerful) algorithm from their paper and refer
to it as LM2 [44]. The main drawback of this choice is that
the analysis only works for strictly sparse vectors where
the measurements are observed without noise. The main
benefit is that one can analyze its performance precisely
using density evolution (DE) and construct EXIT-like curves
to illustrate the benefits of spatial coupling. For example,
in the large system limit, this leads to provable sparsity
thresholds where reconstruction succeeds with probability
one [31], [42].

Although the LM2 decoder is unstable in the presence of
noise, this does not mean that its threshold is meaningless
in practice. The LM2 decoder can be seen as a suboptimal
version of list-message passing (LMP) [44] which itself can
be seen as a limiting case of the full belief-propagation (BP)
decoder for CS [32], [39]. Ideally, one would analyze the BP
decoder directly, but performing a DE analysis for decoders

which pass real functions as messages [32], [39] remains
intractable. Still, we expect that a complete analysis of the
BP decoder would show that its expected performance is
always better than the LM2 decoder and that it allows stable
reconstruction below its sparsity threshold.

Verification decoding rules for message-based LM2
decoding in a CS system:
• (Check Node) The output message on an edge

is equal to the unique value which satisfies the
observation constraint based on all other input
edges. This output message is verified if and
only if all other input messages are verified.

• (Symbol Node) The output message is:
– verified and equal to 0 if any input mes-

sage on another edge is equal to 0,
– verified and equal to the matching value

if any two of the other input messages
match,

– unverified and equal to 0 otherwise.

Initially, the check nodes with measurement equal to zero,
transmit zero on all their outgoing edges. This arises from
the basic property of verification decoders when we consider
the non-zero values to come from a continuous distribution.
The scheme described above does not guarantee that all
verified symbols are actually correct. The event that a symbol
is verified but incorrect is called false verification (FV). If
either the non-zero matrix entries, or the signal values, are
drawn from a continuous distribution, then the FV event has
probability zero.

1) Protograph Density Evolution for LM2 Decoding: For
generality, we consider a verification-based decoding rules
for channels with erasures and errors. The variables w, x, y, z
will be used to denote, respectively, the probability that
the message type is erasure (E), incorrect (I), correct and
unverified (C), and verified (V). The DE equations for LM2
decoding of the standard irregular LDPC code ensemble are
given in [43, p. 125]. For the protograph setup (including
erasures), we derive the DE equations below.

For a check node of degree d, let wi, xi, yi, zi the message-
type probability for the ith input edge and w′i, x

′
i, y
′
i, z
′
i be

the message-type probability for the ith output edge. Then,
we have the update rules

w′i = 1−
∏
j 6=i

(1− wj)

x′i =
∏
j 6=i

(1− wj)−
∏
j 6=i

(1− wj − xj)

y′i =
∏
j 6=i

(yj + zj)−
∏
j 6=i

zj

z′i =
∏
j 6=i

zj (2)

In words, these four disjoint probabilities are for the events:



“at least one E”, “at least one E or I minus at least E”, “all
C or V minus all V”, and “all V”.

For a bit node of degree d, let wi, xi, yi, zi the message-
type probability for the ith input edge and w′i, x

′
i, y
′
i, z
′
i be

the message-type probability for the ith output edge. If ε is
the probability of channel error and p is the probability of
channel erasure, then we have the update rules

w′i = p

∏
j 6=i

(wj + xj) +
∑
k 6=i

yk
∏
j 6=k,i

(wj + xj)


x′i = ε

∏
j 6=i

(wj + xj) +
∑
k 6=i

yk
∏
j 6=k,i

(wj + xj)


y′i = (1− ε− p)

∏
j 6=i

(wj + xj)

z′i = (1− ε− p)
∑
k 6=i

yk
∏
j 6=k,i

(wj + xj)

+

1−
∏
j 6=i

(wj + xj)−
∑
k 6=i

yk
∏
j 6=k,i

(wj + xj)

 . (3)

Let A be the event that “all input edges are E or I except for
at most one C”. In words, these four disjoint probabilities
are for the events: “channel erased and A”, “channel error
and A”, “channel correct and all input edges are E or I”, and
“not A or channel correct and A”.

We can specialize the above DE equations to the case when
we do not have spatial coupling. More precisely, consider the
measurement matrix generated by the regular (dl, dr) LDPC
ensemble. Then for the check node we have,

w′ = 1− (1− w)dr−1

x′ = (1− w)dr−1 − (1− w − x)dr−1

y′ = (y + z)dr−1 − zdr−1

z′ = zdr−1, (4)

and for the variable node side we have,

w′ = p
(
(w + x)dl−1 + (dl − 1)y(w + x)dl−2

)
x′ = ε

(
(w + x)dl−1 + (dl − 1)y(w + x)dl−2

)
y′ = (1− ε− p)(w + x)dl−1

z′ = (1− ε− p)(dl − 1)y(w + x)dl−2

+
(
1− (w + x)dl−1 − (dl − 1)y(w + x)dl−2

)
. (5)

These equations can be compared to [43, p. 125] by setting
p = 0, w = 0, mapping x → b , and mapping y → a. We
remark here that the channel error probability, ε, is equal to
the fraction of non-zero symbols in the signal.

2) EXIT-like curves: In theory of iterative codes, the EXIT
function is defined by H(Xi|Y∼i) [45], where Y∼i denotes
the vector of all observations except Yi. In words, it is the
uncertainty in decoding a bit, when its channel observation
is discarded. In general one can replace Y∼i by φi,dec(Y∼i),
where φi,dec(Y∼i) is the extrinsic estimate of any other
decoder (e.g., BP decoder). Such EXIT-like curves are useful
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Fig. 4. The figure shows the EXIT-like function for the LM2 verification
decoder for compressed sensing. The horizontal and vertical axes correspond
to the sparsity ratio, ε, and the probability of a variable node being unverified
(at the end of decoding), hLM2, respectively. The light gray curve on the
extreme left corresponds to the case of a measurement matrix generated by
a regular (4,8) LDPC code (i.e., sampling ratio equal to 1/2). The curves
in dark correspond to measurement matrices based on coupled (4,8) LDPC
codes of coupling length L = 2, 4, 8, 16, 32, 64, 128, 256. As L increases
the sampling ratio of the coupled measurement matrices go to 1/2 (cf.
equation (1)). Similar to channel coding, we see that the EXIT-like curves
keep on moving to the left as L increases. For large enough L, the curves
seem to get “stuck” at some limiting curve. The phase transition for the
coupled measurement matrix for L = 256 occurs at ≈ 0.287, whereas it
is ≈ 0.208 for the uncoupled case.

visualization tool in iterative coding theory. They have also
been used in iterative coding theory to provide deep results
relating the BP decoder and the optimal MAP decoder [45].
It is hence of great interest to visualize our results by plotting
EXIT-like curves even in the case of compressed sensing.

According to the rules of LM2 decoder, a variable node is
verified, or its value is perfectly known, when the variable
node receives either two or more C (correct but unverified)
messages or one or more V (verified) message. In this case
the EXIT value of the variable node is zero. Thus the EXIT
value of a variable node is proportional to the probability that
a variable node is unverified. In other words, it receives “all
I (incorrect) except at most one C (correct but unverified)”.
This is exactly the probability of the event A (cf. Section II-
C). To summarize: in our experiments we plot an EXIT-
like curve which is the probability of a variable node being
unverified when we change the sparsity ratio continuously.

III. EXPERIMENTS

A. Verification Decoders

We perform DE analysis of the verification decoder. More
precisely, we consider the DE equations (2) to (5). In
particular we consider the case when p = 0, i.e., we have
corruption of symbols only via errors in the channel.

1) EXIT-like curves for fixed sampling ratio: We first
consider measurement matrices generated by the regular
(4, 8) LDPC code. This fixes the sampling ratio to 1/2. We
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Fig. 5. The figure shows the phase transition between successful and
unsuccessful reconstruction as a function of sampling and sparsity. The hor-
izontal axis corresponds to the sampling ratio, δ =M/N . The vertical axis
represents the sparsity ratio (normalized by the number of measurements
rather than the dimension of the signal), ρ = ε/δ = K/M . The continuous
curve is Donoho’s phase transition for weak CS reconstruction using LP
[46]. Each light circle (resp. dark circle) corresponds to the phase transition
for LM2 reconstruction when we use an uncoupled (resp. coupled) (4, 4k)
LDPC code as a measurement matrix with k = 2, 3, . . . , 10.

then fix the sparsity ratio 0 < ε < 1 and run DE equations (4)
and (5), till a fixed point is reached. We then use the fixed
point densities to evaluate the probability that a particular
node is unverified. We plot this value on the vertical axis in
Fig. 4, for different values of ε. In this case, the EXIT-like
curve is illustrated by the light gray curve (leftmost) in Fig. 4.
We observe that below ε ≈ 0.208, the fixed point is trivial.
More precisely, for sparsity ratio ε ≤ 0.208, the probability
that a node is unverified goes to zero. This means that, with
high probability, the LM2 decoder is able to reconstruct the
signal exactly. For ε > 0.208, we see that the LM2 decoder
fails to reconstruct the signal and the probability of a variable
node being unverified is non-zero.

Similar experiment is now done with spatially coupled
(4, 8, L) measurement matrices. We run the DE equa-
tions given by (2) and (3) for different lengths, L =
2, 4, 8, 16, 32, 64, 128, 256. For L = 2, the threshold is ≈
0.837. The reason for such a large value of the threshold
is the because the sampling ratio is much larger than 0.5
(cf. equation (1)). As L increases the curves move to the
left, which is similar to the effect observed in channel
coding (cf. Fig. 3). As L increases, the resultant measurement
matrix resembles more and more like the uncoupled (4, 8)
measurement matrix (locally) and the sampling ratio also
approaches 1/2. However, the curves seem to get stuck at
ε ≈ 0.287. To summarize: for large L we have the sampling
ratio δ very close to 0.5 and we observe that the sparsity
threshold is much larger, ε ≈ 0.287.

2) Phase transition: We run the DE equations for differ-
ent values of the sampling ratio. Let us explain this more pre-
cisely. As usual, we consider an uncoupled (dl, dr) measure-
ment matrix generated and its coupled version, (dl, dr, L).
We fix dl = 4 and consider dr = kdl for different values of

k. As a consequence, we obtain different values of δ = 1/k.
We run DE equations (2) and (3) for k = 2, 3, . . . , 10 and
for L = 1000 fixed for all the experiments.

Figure 5 shows the results. The light circles correspond to
the regular case and the dark circles correspond to the cou-
pled case. We see that for the sampling ratios considered, the
coupled measurement matrices have an improved sparsity-
sampling trade-off. At the first, the trend of the circles
may seem a bit strange. But, the normalized coordinates of
the plot imply that a family of systems achieving a fixed
oversampling ratio family would give a horizontal line.

The continuous curve shown is Donoho’s phase transition
for weak CS reconstruction using LP [46]. This was later
identified in [35] as the LP threshold for AMP reconstruction
of a sparse signal with a worst-case amplitude distribution.
For this reason, the comparison is not really fair. The LM2
thresholds are for the noiseless measurement of a special
class of signals, while LP reconstruction thresholds are for
the stable reconstruction of a random signal drawn from any
i.i.d. distribution. Still, this result does highlight the fact that
better performance is possible (and might even be achieved
by LP reconstruction) in some special cases.

B. BP and LP Reconstruction

Simulations were also performed for belief-propagation
(BP) and linear-programming (LP) reconstruction of cou-
pled and uncoupled measurement matrices. The initial goal
was to choose system parameters that would allow direct
comparison with [39, Fig. 3]. Unfortunately, the rate loss
associated with coupled codes made it difficult to achieve
fair comparisons in this case. Therefore, the tested system
uses noiseless measurements to reconstruct signals from the
two-Gaussian model with N = 4032, ε = 0.1, σ0 = 0.5,
and σ1 = 10. For the coupled and uncoupled systems,
measurement matrices are based on (dl, dr) regular codes
with dl = 5, 7, 9 and dr = 2dl, 3dl, 4dl. Non-zero entries
in these matrices are randomly chosen to be either +1 or
−1. These parameters give asymptotic sampling ratios of
δ = 0.25, 0.5, 0.75, but the coupled systems have slightly
more measurements due to finite-L rate loss.

For each setup, the experiment tested a single (randomly
constructed) measurement matrix on the same set of 10
randomly generated signal vectors with N = 4032 and
K = 403 (the number of non-zero symbols in the signal).
During each trial, the BP decoder is run for 30 iterations
and the root-mean-square error (RMSE) is calculated. The
curves in Figure 6 show the median RMSE (over 10 trials)
for the particular parameters.

In Fig. 6 we compare the coupled and uncoupled mea-
surement matrix for increasing average degrees. In Fig. 7 we
compare the performance of CSBP and LP decoders when
we consider coupled and uncoupled measurement matrix
with variable node degree fixed to 7. The figure also shows
the performance curve when we use the Sarvotham, Barron,
Baraniuk (SBB) (see [39]) ensemble for measuring.

We remark here that the simulation setup for this section
uses L between 24 and 48. The number of coupling stages
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Fig. 6. RMSE reconstruction error for 10 trials of BP reconstruction (with
30 iterations) of signals from the two-Gaussian model with N = 4032,
ε = 0.1, σ0 = 0.5, and σ1 = 10. The measurement matrices used are
based on coupled and uncoupled (dl, dr)-regular codes with dl = 5, 7, 9
and dr = 2dl, 3dl, 4dl. To fix the block length, the number of coupling
stages is chosen to be L = 48/k. These parameters give sampling ratios
close to δ = 0.25, 0.5, 0.75, but the coupled systems have slightly more
measurements due to the finite-L rate loss.

must be kept somewhat low for two reasons: (i) to prevent
short cycles in the decoding graph and (ii) to reduce the
decoding time as the number of required decoding iterations
increases with L. These small values of L result in a
slightly larger sampling ratio (i.e., more measurements) for
the coupled measurement matrices as opposed to uncoupled
measurement matrices. This effect is handled correctly on the
simulation curves, but makes direct comparison somewhat
difficult. As a consequence, we observe that there is no
appreciable gain by using couplng in the case when we are
using the CSBP decoder. The performance changes are very
small and do not support a conclusion that spatial-coupling
provides large gains for CS with BP reconstruction.

The basis-pursuit LP reconstruction technique was also
tested with each measurement matrix and signal vector. The
results for symbol degree dl = 7 are shown in Figure 7.
From this, one observes that LP reconstruction benefits even
less from spatial coupling.

However, results from the channel coding setup imply
that the performance for moderate L is very close to the
performance when L is very large. For example, Figures 3
and 4 show that the threshold for L = 16 has already
saturated to the L→∞ threshold. Nevertheless, experiments
with larger values of L merit further investigation.

IV. DISCUSSION

Recently, it was shown in [47] that the effect of cou-
pling is also observed in many other problems, like the
k-satisfiability, graph coloring and Curie-Weiss model of
statistical physics. In this paper, we found that spatially-
coupled measurement matrices have an improved sparsity-
sampling ratio for model used by verification decoding. This
provides evidence that the phenomena of spatial coupling
is quite general. On the other hand, we also observed that
spatially-coupled measurement matrices provide little (if any)
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Fig. 7. Median reconstruction error for 10 reconstruction trials of signals
from the two-Gaussian model with N = 4032, ε = 0.1, σ0 = 0.5, and
σ1 = 10. Reconstruction is performed either using belief propagation (BP)
or linear programming (LP). The measurement matrices used are based on
coupled and uncoupled (7, 7k)-regular codes with k = 2, 3, 4. To fix the
block length, the number of coupling stages is chosen to be L = 48/k.
These parameters give sampling ratios close to δ = 0.25, 0.5, 0.75, but the
coupled systems have slightly more measurements due to the finite-L rate
loss.

gains for the compressed-sensing problem with moderate
blocklengths and belief-propagation reconstruction.

We conclude with possible future research directions.
1) It would be interesting to see the effect of spatial

coupling on other reconstruction techniques for com-
pressed sensing. For example, Donoho, Maleki and
Montanari recently proposed an approximate message
passing (AMP) algorithm for compressed sensing.
They showed that the AMP, when tuned to the minimax
thresholding function, achieves the same sparsity to
sampling trade-off as `1 decoding. It would be inter-
esting to investigate the effect of spatial coupling on
AMP, especially if it can be tuned to `p minimization
for 0 < p < 1.

2) There are also interesting open questions regarding
EXIT-like curves for compressed-sensing reconstruc-
tion. What is the meaning, if there is any, of the
limiting curve in Figure 4? Can we define an EXIT-
like curve for CS reconstruction that obeys an Area
Theorem like in the case of channel coding [45].
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